
EECS 562 Homework #5

- 1. A received signal is r(t) is composed of the transmitted signal x(t) plus noise n(t), i.e., r(t)=x(t)+n(t). The received signal is r(t) is input to a filter H(f) to produce the output signal y(t).
 - a) Find the output S/N in dB given H(f) is an IBPF centered at 100 MHz with a bandwidth B of 50 kHz and the following parameters

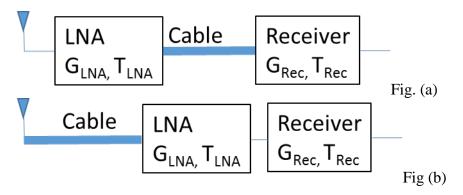
$$S_n(f) = \frac{\eta}{2}$$
 with $\eta = 4x10^{-11}$
 $x(t) = A\cos(2\pi f_c t)$ with $f_c = 100$ MHz and $A = 6x10^{-3}$

- b) As A decreased the output S/N increases, circle TRUE or FALSE.
- 2. A receiver has a bandwidth of 2.5 MHz, sensitivity of -94 dB_m and a noise figure of 12 dB. What is the minimum predetection S/N in dB. The receiver sensitivity is defined as the minimum received signal power (pre-detection) that will provide a demodulated signal with acceptable performance. Assume $T_i=T_o$ and $G_P=1$
- 3. Problem 11.12
- 4. Problem 11.22
- 5. A received signal, y(t), is the sum of the desired information signal x(t) and noise, n(t). y(t) = x(t) + n(t). Here $x(t) = 2\cos(2\pi 1000t) + \cos(2\pi 2000t)$ and $S_n(f) = 10^{-4}$ W/Hz. The receive structure is:

- a) What is the power in x(t)?
- b) Find the output signal-to-noise ratio in dB.
- c) How would you redesign the receiver structure to improve the output signal-to-noise ratio?

6. An LTE the downlink - base station (eNodeB) transmitting & hand set (UE) receiving - has the following parameters:

following parameters.	
eNodeB transmit power	40 W
Transmit antenna gain	5 dB
Carrier frequency	1900 MHZ
Distance between UE and ENodeB	10km
Receive antenna gain	0 dB
Receiver antenna temperature	$10^{0} { m K}$
UE noise figure	10 dB
Bandwidth	10 MHz


a) What is the UE noise temperature?

b) What is the path loss in dB?

c) What is the EIRP in dB_W?

d) What is the UE (output) S/N?

- e) The eNodeB needs to communicate to a UE 20 km from the eNodeB with the same output S/N found above. What system parameter would your change to compensate for the increase path loss? Specify if you would INCREASE or DECREASE the selected system parameter and by how much.
- 7. Calculate the overall equivalent system noise temperature and noise figure for the following cases
- a) For the system shown in Fig. (a), the receiver noise figure is 12 dB, the cable loss is 5 dB, the Low Noise Amplifier (LNA) gain is 50 dB and its noise temperature is 150K. The antenna noise temperature is 35 K. The LNA is placed with the antenna.
- b) Repeat the calculation of when the system of Fig. (a) is arranged as shown in Fig. (b). The LNA is placed with receiver, e.g., at bottom of tower.
- c. Which configuration (a) or (b) exhibits better performance? If the antenna is at the top of a 50 ft tower would you place the LNA at the antenna and run a cable to the receiver at the bottom of the tower, or run a cable from the antenna to a combined LNA/receiver at the bottom of the tower?

- 8. Go to <u>http://www.rflambda.com/search_lownoiseamplifier.jsp</u> What is the gain and noise figure and frequency range of R13M02GSA?
- 9. Go to <u>https://www.fcc.gov/media/engineering/dtvmaps</u> enter 66044 for the zip code, click on KTWU.
 - a. What is the receive power in dBm?
 - b. Click on the Gain/Loss Map; is Lawrence included in the viewing area?